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The use of digital images to determine

deformation throughout a microstructure

Part I Deformation mapping technique
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Materials with heterogeneous microstructures do not deform uniformly under stress
(mechanical or environmental). A new deformation mapping technique (DMT), which
compares digital images of microstructures of the same field of view before and after
deformation occurs, is reported. Two digital images are required: a reference image, taken
before deformation; and a deformed image, taken after deformation. The displacements of
pixels required to match the deformed image to the reference image are computed, and
these displacements are used to calculate the percent deformation in the two principal
directions. Results are presented as either a deformation map, as a histogram, or as data
files containing the displacements at the corner of each pixel. Comparison with exact
solutions generated on a simulated microstructure shows that the accuracy of this
technique is quite good. C© 2000 Kluwer Academic Publishers

1. Introduction
Although a material that undergoes mechanical de-
formation may appear at the macroscale to be de-
formed uniformly, at the microscale this is not the case,
especially in multi-phase materials. It is the local de-
formations occurring within the microstructure that ul-
timately lead to cracking and failure. Some types of
deformation, such as drying shrinkage in cement-based
materials, involve complex processes at the microme-
ter and smaller levels, and they cannot be investigated
directly without measuring displacement at this level.

One of the biggest problems in measuring deforma-
tions on the microscale is that the displacements in-
volved are too small to be measured easily or accu-
rately. However, a recent paper has described an image
intensity matching technique (IIMT) capable of detect-
ing very smalldisplacementsof features in digital im-
ages [1]. This technique uses a minimum mean square
error criterion to compare areferenceimage, taken be-
fore deformation, and adeformedimage, taken after a
stress of some kind is applied to the sample and defor-
mation occurs. Displacements can be determined with
a resolution of approximately±0.2 pixels. Since the
IIMT operates on the pixel gray levels of each im-
age, the source of the digital images is irrelevant, and
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the source of the deformation may include mechanical,
thermal, and/or environmental stress.

Though the magnitude of deformations between sev-
eral pairs of points due to drying shrinkage in the ce-
ment paste microstructure has been previously deter-
mined [2–4], no information about the actual physical
distribution of deformation within the microstructure
was presented. The spatial distribution of deformation
could provide more valuable information than can be
expressed in a single number like the average over-
all drying shrinkage. For example, certain mechanisms
may be masked if the large-scale deformation alone is
studied, because although it may appear that little over-
all deformation occurred, there still may be fairly large
micro-scale tensile and compressive mechanisms that
balanced each other, resulting in a low net deforma-
tion. Furthermore, in composite materials with impor-
tant internal interfaces, concentrations of deformation
may dominate behavior.

This paper outlines a new deformation mapping tech-
nique (DMT) capable of providing a physical represen-
tation of the deformations in a microstructure. Because
this technique is based on the IIMT mentioned previ-
ously, the DMT will also work on any set of digital
images. The DMT takes the displacements computed
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by the IIMT and then uses a finite element interpolation
technique to compute deformations, averaged from the
principal deformations over each pixel. A description
of this technique, and the information that can be ex-
tracted from it, are presented in the following section.
Image resolution and the effects of scale on the DMT
are also discussed.

As with any microscopic technique or any surface
strain measuring technique, information is obtained
from a surface, and results must be interpreted accord-
ingly. In particular, a free surface is not as constrained
as the interior, and associated deformations will be dif-
ferent than they are beneath the surface. Nevertheless,
new insights can be obtained using the DMT.

2. Deformation vs. strain
It is important to differentiate between deformation and
elastic strain for the following analysis. Deformation is
analogous to elastic strain, as both can be defined as the
limit of the change in length over the initial length, as
the initial length goes to zero.

Elastic strain, either in the linear limit of small
strains [5], or in the more general finite strain regime
[6, 7], implies that the stress state can be determined by
multiplying by the appropriate modulus. However, dry-
ing shrinkage is a highly inelastic situation, with a large
viscoelastic component. De-bonding can occur and re-
arrangement of phases is possible, which can result in
unusually large local displacements. Thus, while the
deformations within the microstructure are computed
from the displacements using a finite strain formula-
tion (see Section 3.3), they cannot be related directly
to a stress state as in the finite strain elastic case [6, 7].
Although it is true that some time-dependent consti-
tutive equation describes such a relationship, the form
of the equation depends on specimen geometry, phase
distribution, history, and is at present unknown. Ad-
ditionally, cracking accompanies deformation in many
cases, and no satisfactory mathematical criterion for
crack initiation has yet been developed. Therefore, in
order to avoid confusion, the termrarefactionwill be
used to describe features which increase in size (analo-
gous to undergoing a tensile strain), and the termcom-
paction will be used to describe features which de-
crease in size (analogous to undergoing a compressive
strain).

3. Description of DMT
There are five steps to the DMT, which systematically
computes the average deformations in each pixel of a
digital image of a microstructure.

3.1. Step 1: Image acquisition
The DMT requires two digital images, one taken be-
fore deformation (thereference image) and one taken
after deformation (thedeformed image). As mentioned
earlier, a variety of sources and magnifications for ob-
taining the digital images may be used. The DMT is
equally applicable to digital images of a bridge or dam,

or an environmental scanning electron micrograph of a
few grains of cement. Likewise, the source of deforma-
tion is irrelevant, with the most likely sources being me-
chanical, thermal, and environmental stresses, although
processes such as deterioration over longer periods of
time may also be analyzed. Thus, the DMT can be used
with virtually any imaging technique. As will be dis-
cussed later, the success of the technique does depend
on the sharpness of the image and on the size of features
within the image. Each image is stored digitally as an
array of gray scales where 255 represents white and 0
represents black. These reference and deformed images
must be taken at the same magnification, however, or
the analysis becomes invalid.

3.2. Step 2: Calculation of displacements
via IIMT

The second step is to use the DMT to calculate thex1
and x2 displacements of a search window and assign
these displacements to a point. While this technique is
described in detail elsewhere [1] for computing dis-
placement between points, it is reviewed below be-
cause, for the first time, it is being applied to displace-
ments between associated pixels, and this demands
careful analysis of the resolution and reliability of the
technique.

To minimize differences in brightness and contrast
between the two images due to instrumentation, the in-
tensities of the pixels in each region of analysis, referred
to as a window, are modified to a distribution with a
mean of zero and a standard deviation of one. From the
deformed image, a small square window, 20 pixels on a
side (already determined to be a useful size [1]), is cen-
tered on the pixel of interest. This window is referred to
as thesearch window. A larger square window, 40 pixels
on a side, is centered on the same pixel in the reference
image and is called thereference window. The search
window is systematically moved and distorted over the
reference window and a minimum mean square error
criterion is determined from the following:

Minimum of
∫

Search Window
(Intensitysearch window

− Intensityreference window)
2 (1)

The center of the search window defines a displace-
ment. Repetition of this process determines the dis-
placement of each pixel of the image of deformed ma-
terial. Edge effects are removed by not analyzing the
40 pixels nearest each edge of both images.

In simple terms, this technique finds the location of
the search window that minimizes the difference in in-
tensity between this window and the reference win-
dow, in a least squares manner. This approach finds
minimums for differences in intensity and is analogous
to many finite element or finite difference techniques,
where minimums in energy are sought. In all cases, the
minimum may not be sharply defined, but it is unique
and nontrivial.

The DMT technique has conceptual similarities to the
Moire method of determining surface strains [8–10]. In
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the Moire technique, a grid is laid down on the un-
deformed sample, using lithographic or other means.
After deformation, the deformed grid is compared op-
tically with the undeformed grid. Optical interference
between the two grids produces fringes, which can then
be analyzed to produce surface displacements and de-
formations. In a sense, the DMT is a Moire technique,
where the grid used is the digital image pixel structure.
However, the pixel grid is always undeformed, but the
changing pixel intensities are analyzed to compute lo-
cal displacements and deformations. A good concep-
tual review of the Moire technique, as of 1970, is given
in Ref. [8], while more modern developments can be
found in Refs. [9] and [10].

The accuracy of the location of each center point is
important. It has been reported previously [1] that the
displacement of a sharp boundary between the regions
of different levels of gray can be determined to an accu-
racy of 0.2 of a pixel in one direction (This is possible
because of interpolation between rows or columns). In
other words, if one pixel in each row or column were to
move 0.2 of a pixel, then the 20× 20 pixels will detect
this displacement. Since twenty pixels are located with
an accuracy of 0.2 pixels, the uncertainty in the location
of each pixel is 0.01 pixel. The best demonstration of
this is to calibrate the technique using images of known
deformation, as discussed later.

3.3. Step 3: Calculation of deformations
When the DMT has finished operating on all pixels in
the image, an array of displacements of each pixel rel-
ative to the undeformed image has been determined.
The problem now is to compute local displacements,
i.e. displacements relative to near neighbor displace-
ments and not relative to the reference which for any
one displacement is cumulative. So far the array of dis-
placements represents the average displacements of the
pixel centers, the location of which is not exactly de-
fined. To calculate the deformation of each pixel, we
must transfer the displacements to the pixel corners,
which will serve as nodes for the finite element anal-
ysis. This is accomplished by computing the average
of the displacements of four adjacent pixels as shown
in Fig. 1 and defining that as the displacement of node.
Theu1 andu2 displacements of node 1, shown in Fig. 1,
is given by the average of the displacements of pixels
A, B, C and D according to:

u1
1 =

1

4

(
uA

1 + uB
1 + uC

1 + uD
1

)
(2a)

u1
2 =

1

4

(
uA

2 + uB
2 + uC

2 + uD
2

)
(2b)

whereu1 is the displacement at node 1, anduA, uB, uC,
uD are displacements of surrounding pixels. The sub-
scripts indicate the direction of displacement, and the
superscripts indicate the location of the displacement.
Repetition defines an array of displacements of nodes.

The deformation (mathematically equivalent to the
finite strain) tensor at a given node is defined by [5–7]:

Figure 1 Portion of finite element grid. Displacements at node 1 are
calculated by averaging displacements of pixels A, B, C, and D.

Figure 2 Repetition of the algorithm described in Fig. 1 is used to define
the displacements at the corners (nodes) of newly defined unit pixel node
assignments used for deformation calculations.

φik = 1

2

(
∂ui

∂xk
+ ∂uk

∂xi
+ ∂ul

∂xi

∂ul

∂xk

)
i, k, l = 1, 2 (3)

whereφik is the deformation tensor, andx is an arbi-
trary length in the direction noted by the subscript. The
superscript denoting the node has been dropped for the
moment. This is the full finite strain (deformation) ten-
sor, and has not been linearized for small deformations.
It is necessary to use the full finite strain form because
local deformations in a microstructure can be large, es-
pecially when cracking or de-bonding takes place, as
mentioned previously. The three independent (two di-
agonal, one off-diagonal) elements of the deformation
tensor are:

φ11 = 1

2

[
2
∂u1

∂x1
+
(
∂u1

∂x1

)2

+
(
∂u2

∂x1

)2
]

(4a)

φ22 = 1

2

[
2
∂u2

∂x2
+
(
∂u1

∂x2

)2

+
(
∂u2

∂x2

)2
]

(4b)

φ12 = 1

2

[
∂u1

∂x2
+ ∂u2

∂x1
+ ∂u1

∂x1

∂u1

∂x2
+ ∂u2

∂x1

∂u2

∂x2

]
(4c)

To compute these deformations, it becomes necessary
to describe the displacements as functions ofx1 andx2,
so that the derivatives indicated in Equations 4a–c can
be determined. It is possible to approximately describe
the displacement at any point along a given direction as
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a function ofx1 andx2, 0< x1, x2< 1 (origin at node 1),
through simple linear interpolation formulae, by treat-
ing the new “deformed pixel” as a bi-linear finite ele-
ment [11–13]:

u1(x1, x2) = (1− x1)(1− x2)u1
1+ x1(1− x2)u2

1

+ x1x2u3
1+ (1− x1)x2u4

1 (5a)

u2(x1, x2) = (1− x1)(1− x2)u1
2+ x1(1− x2)u2

2

+ x1x2u3
2+ (1− x1)x2u4

2 (5b)

where the superscripts 1, 2, 3, and 4 represent the four
corners of the new pixels, each corner being a node (The
superscripts are as defined for Equation 2). These for-
mulae can be used to evaluate Equation 4a–c, resulting
in the following:

φ11 = 1

2

(
k1x2

2 + k2x2+ k3
)

(6a)

φ22 = 1

2

(
k4x2

1 + k5x1+ k6
)

(6b)

φ12 = 1

2
(k7x1+ k8x2+ k9x1x2+ k10) (6c)

where

k1 =
[(

u2
1− u1

1

)− (u3
1− u4

1

)]2+ [(u2
2− u1

2

)
− (u3

2− u4
2

)]2
(7a)

k2 = 2
[(

u3
1− u4

1

)− (u2
1− u1

1

)− (u2
1− u1

1

)2
+ (u2

1− u1
1

)(
u3

1− u4
1

)− (u2
2− u1

2

)2
+ (u2

2− u1
2

)(
u3

2− u4
2

)]
(7b)

k3 = 2
(
u2

1− u1
1

)+ (u2
1− u1

1

)2+ (u2
2− u1

2

)2
(7c)

k4 =
[(

u4
1− u1

1

)− (u3
1− u2

1

)]2+ [(u4
2− u1

2

)
− (u3

2− u4
2
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(7d)
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[(

u3
2− u2

2

)− (u4
2− u1

2

)− (u4
2− u1

2

)2
+ (u4

2− u1
2

)(
u3

2− u2
2

)− (u4
1− u1

1

)2
+ (u4

1− u1
1

)(
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)2
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1
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k10 =
(
u4

1− u1
1

)+ (u2
2− u1

2
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u4

1− u1
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The average deformation for the new pixel (area within
four nodes) is computed by integrating over the entire
pixel via:

〈φ〉 = 1

2

∫ 1

0

∫ 1

0
dx1 dx2φ(x1, x2) (8)

The equations for the finite strain tensor are:

〈φ11〉 = 1

2

(
k1

3
+ k2

2
+ k3

)
(9a)

〈φ22〉 = 1

2

(
k4

3
+ k5

2
+ k6

)
(9b)

〈φ12〉 = 1

2

(
k7

2
+ k8

2
+ k9

4
+ k10

)
(9c)

Thex1 andx2 dependence of the deformation within the
pixel is not meaningful, since the pixel is the smallest
material unit.

The diagonalized deformation tensor gives the prin-
cipal deformations within each pixel. To find the eigen-
values, or principal deformations, for the tensor, it
is necessary to solve Equation 10 using〈φ〉 from
Equation 9:∣∣∣∣〈φ11〉 − λ1 〈φ12〉

〈φ12〉 〈φ22〉 − λ2

∣∣∣∣ = 0 (10)

whereλ= the eigenvalues. The resulting solutions take
the form:

φ∗11, φ
∗
22

=
(φ11+φ22)±

√[
(φ11+φ22)2− 4

(
φ11φ22−φ2

12

)]
2

(11)

whereφ∗11 andφ∗22 are the principal deformations av-
eraged over the given pixel. This ability to compute
principal deformations, as opposed to simple displace-
ments, makes this technique unique.
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3.4. Step 4: Filtering the deformation map
A median filter was used to remove the background
noise from the deformation map. This is a simple filter,
which eliminates very high and very low values from
the analysis, which are usually spurious noise generated
by the algorithm [14]. It operates on each pixel in the
deformation map sequentially. The deformation values
of the current pixel and the eight surrounding pixels
are ranked by magnitude, and the median value of that
ranking is assigned to the current pixel. It is important
to note that this new value is stored in a different map,
so that all of the filter analysis is performed on the
original data set, rather than a combination of original
and filtered data. The final deformation map is then
represented by the filtered data set.

3.5. Step 5: Reporting the data
The results of this analysis can be presented in sev-
eral formats. First, the deformations in each pixel can
be mapped to allow direct comparison between high
deformation areas and their associated microstructural
features. At present, most of the deformation maps, in-
cluding all of the deformation maps shown in this paper,
report average linear deformation based on area shrink-
age or swelling for each pixel. This is determined by
calculating the fractional area change in a pixel and
taking the square root by:

φ = 1l

l
= √afinal− ainitial (12)

where l = 1, the unit pixel length; afinal= (1+
φ∗11)(1+φ∗22); andainitial = 1. Additional maps consist-
ing of each component of the deformation tensor,φ11,
φ22, andφ12, or of the principal deformations,φ∗11 and
φ∗22 can be created using Equations 9a–c or 11, respec-
tively. There are two kinds of maps commonly used in
this work: a compaction map and a rarefaction map. In
a compaction map, all areas with positive deformations
are turned to white, and the areas with compaction de-
formation are scaled so that the darker the gray scale,
the higher the magnitude of the compaction. The rare-
faction maps are similarly constructed, with all pixels
with negative deformations turned white, and the pos-
itive deformations scaled so that the darker the gray
scale, the higher magnitude the deformation.

From a given map, deformation distributions can
be constructed to illustrate the numerical distribution
of deformations in a sample. These are constructed
by counting the number of pixels with a given av-
erage linear deformation and representing the data
as a histogram of area fraction vs. deformation. The
distribution gives quantitative information about local
deformations in the microstructure. Integrating the de-
formation distribution gives the total deformation of the
image.

4. 2-D vs. 3-D considerations
As with most microscopic techniques and also most
techniques for measuring strain, information is ob-
tained from a surface, which is less constrained than the
interior. This is particularly important to keep in mind
when measuring local deformation, and particularly so

on a rough surface where constraints could be very dif-
ferent than they would be in the interior. In spite of
shortcomings such as this, the DMT can provide useful
insights about deformation within the microstructure of
complex materials.

Another possible point of concern in the IIMT part of
the DMT is the use of 2-D images to represent the 3-D
mechanisms occurring during deformation. This topic
has been covered in detail in other papers [3] but will
be repeated here due to its importance.

In previous work [3, 4], the samples used were frac-
ture flakes, approximately 1 mm thick, and about 1 cm2

in area. These were approximately unrestrained in all
three dimensions. The shape of the samples implies
that, if we were to think of them as 2-D samples, we
should use the plane stress conditions, which is more
applicable to thin samples [15]. The IIMT technique
measures the shrinkage deformation in two dimensions
only.

An examination of the physical situation being stud-
ied confirms the applicability of this technique. Take,
for example, a shrinking layer that surrounds a single
nonshrinking particle such as shown in cross-section in
Fig. 3a. The fracture plane labeled in the figure is the
average surface of the sample, with the particle:product
composite protruding above the fracture plane. The
outer circle (labeledBefore shrinkage) indicates the

(a)

(b)

(c)

Figure 3 (a) Example of particle surrounded by shrinking phase pro-
truding above the fracture plane (sample surface) showing outer radius
before and after shrinkage (Dark gray= particle; Light gray= shrinking
phase); (b) Similar triangles created by shrinkage shown in (a); (c) Rep-
resentation of singularity for points lying directly above the center of the
particle.
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outer limits of the product in a wet state; the inner cir-
cle (labeledAfter shrinkage) indicates the new product
limit as drying shrinkage occurs. Assuming this shrink-
age at this scale is homogeneous and isotropic, a pair
of similar triangles may be drawn from the center of
the particle to any point on its outer edge, as shown in
Fig. 3b. For similar triangles, it is known that:

l1
l2
= x1

x2
(13)

indicating that the projection of the outer radius (thex’s)
will scale directly with the change in length of the the
outer radius (thel ’s). More explicitly, the deformation
along thel -direction is given by:

φl = l2− l1
l1

(14)

Similarly, the deformation along thex-direction is
given by:

φx = x2− x1

x1
(15)

Re-arranging Equation 13, and substituting into Equa-
tion 15 gives:

φx =
x2− l1

l2
x2

l1
l2

x2
= l − l1

l2
l1
l2

= l2− l1
l1
= φ1 (16)

Thus, the deformation along thex-direction is identical
to that in thel-direction. We only reportx1, x2 defor-
mations, and any out of plane deformations are not part
of the analysis.

What if the layers re-arrange or move without shrink-
ing? This is possible, but highly unlikely within the
product of cement hydration, except on a very small
scale due to the densely layered nature of the shrinking
product [16, 17]. The interlayer distances in C-S-H are
on the nanometer scale, providing very little room for
movement of a single layer. It is comparable to moving
one page in a closed book. However, at the larger scale,
shifting or crumpling particles could account for very
large apparent deformation at the edge of the particle
or at the edge of an opening crack. The problems must
be considered when interpreting IIMT and DMT.

5. Experimental accuracy of the DMT
The deformation at each pixel is computed in such a
way that information is taken from many pixels and
then the average deformation of nearest neighbors is
incorporated into the final result for the area of each
pixel. The mathematical accuracy of DMT has not been
determined analytically, so it is useful to experimentally
explore the accuracy of the technique, which will also
serve to validate the technique.

The validity and accuracy of the DMT was assessed
by comparison of DMT results with a numerically
“exact” solution determined by a finite element model.

Figure 4 Initial 100× 100 pixel version of model microstructure for
DMT reference image. The initials ‘CMN’ are white with random gray
levels in the background.

The idea is to use an established finite element tech-
nique [12, 13], applied to a model microstructure to
1) compute the average (linear elastic) deformations
across the microstructure, where some of the phases
were shrinking and some were restraining, and 2) pro-
duce a deformed image to which the DMT could be
applied. The resulting deformations computed by the
DMT could then be quantitatively compared to the de-
formations computed by the finite element technique,
which is known to be accurate [12, 13].

A 100× 100 pixel model microstructure was con-
structed as shown in Fig. 4. The reason for the small
size of the image, i.e. less than 500× 500 pixels, will
become apparent shortly. The model microstructure
consisted of the letters “CMN” aligned in various di-
rections. Each pixel within the initials was assigned
a greyscale value of 255 (pure white). The letters oc-
cupy 4,720 of the 10,000 pixels, for an area fraction
of 47.2%. Each pixel in the background was assigned
a random greyscale value between 0 and 254 in or-
der to give a wide range of greyscales for the IIMT
to operate on. This is required, as the IIMT can op-
erate on a simple two phase image, but if only one
sharp boundary moves, all of the pixels will be moved
without any influence from the others which have only
a constant level of gray and therefore do not influ-
ence the least squares’ minimization process (i.e. all
displacements have the same influence). If there is
detail, however, within the search window, the mini-
mization process will fairly incorporate all of the pix-
els as it seeks a well-defined minimum. Without the
detail, there will be a tendency to overestimate aver-
age displacements because of the domination of a few
pixels.

A finite element technique specialized for digital im-
ages [12,13] was used to simulate free shrinkage on the
model microstructure. For this simulation, the image
was treated as consisting of only two regions which we
will call phases, as shown in Fig. 5. One phase con-
sisted of the pixels with a single greyscale of 255 (the
initials); the other phase consisted of all of the pixels
with a greyscale between 0 and 254 (the background).
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Figure 5 The initials ‘CMN’ are white, and the background black for the
100× 100 pixel model microstructure used for finite element simulation
of shrinkage.

Again the initials occupied an area fraction of 47.2%
(4,720 of 10,000 pixels). In one respect, this is a fairly
severe test of the DMT because it will work better if
the initials phase contained detail. The “initials” phase
was assigned an elastic modulus three times that of the
background phase (Einitials/Ebackground= 3), and was as-
signed an intrinsic shrinkage of 10%. This means that
the “initials” phase would shrink 10% in each direction
if left in an unrestrained state. The background phase
was assumed to be a non-shrinking, restraining phase.
After running the finite element simulation, the com-
puted displacements at each node in the 100× 100 pixel
image were used to compute the average strain, or de-
formation, in each pixel.

Two larger microstructures, 500 pixels square, were
then produced to provide higher resolution images
needed for this test of the accuracy of the DMT.
The first of these two microstructures was simply a
scale-up of the undeformed microstructure shown in
Fig. 4. This microstructure was computed by map-
ping each pixel in the 100× 100 pixel microstruc-
ture onto the corresponding 5× 5= 25 pixels in the
500× 500 pixel microstructure, as shown in Fig. 6. The
resulting microstructure is identical to the initial model
microstructure except in the number of pixels it con-
tains. This served as thereference imageused for testing
the DMT.

Figure 6 Each pixel in the 100× 100 image is replaced with 25 pixels
with the same level of gray to produce a 500× 500 pixel image.

Figure 7 The computed deformed pixel (a) is simulated by overlaying
the deformed pixel on a 5× 5 pixel square and (b) converting all pixels
that are more than half covered to the appropriate level of gray (c).

The next image needed is an image of a deformed
microstructure upon which the DMT will operate. To
obtain this image, a third microstructure used the dis-
placements calculated by the shrinkage simulation on
the 100× 100 pixel system to calculate the actual new
shape of each pixel in the 500× 500 pixel microstruc-
ture. This is the main reason why the initial image was
100× 100, as the scaling to 500× 500 facilitates pro-
ducing the effect of deformed pixels with the use of
standard pixels particularly when the deformation is not
rectilinear as shown in Fig. 7. A 500× 500 pixel image
was then used to display these new, deformed shapes
that were computed at 100× 100 resolution. This pro-
cess is demonstrated in Fig. 7, where the five times
higher resolution is used to show the new shape of the
model microstructure. In conjunction with the scaled
up undeformed images, the DMT uses the microstruc-
ture shown in Fig. 8, thedeformed image, to compute
deformation. This process was carried out in order to
produce a deformed image similar to that seen in a mi-
croscope.

Finally a microstructure of the computed deforma-
tions, for comparison, with DMT measured deforma-
tions, was produced. The microstructure was a scale
up of Fig. 5, produced as above, to 500× 500 pixels.
The finite element simulation was then re-run at this
resolution, giving a 500× 500 pixel image of the aver-
age deformations in each pixel. The result of the DMT,
which is a 500× 500 pixel deformation map, will be
comparedto this image of deformations.

Fig. 8 shows the rarefaction map for the 500×
500 pixel images: (a) finite element solution, and
(b) DMT technique, and Fig. 9 shows the correspond-
ing compaction maps. As can be seen, there are some
areas of higher deformation that are detected in the
DMT analysis but are not present in the exact solution
analysis. This is probably due to local lack of detail in
the letters as already described. Overall, the agreement
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Figure 8 Comparison of compaction maps between (a) finite element solution, and (b) DMT technique. Darker colors indicate higher magnitude
deformations.

Figure 9 Comparison of rarefaction maps between (a) finite element solution, and (b) DMT technique. Darker colors indicate higher magnitude
deformations.

between the exact solution and the DMT technique
seems at least qualitatively good.

Fig. 10 shows histograms of deformation (i.e. num-
ber of pixels at each deformation) as determined both
by the finite element simulation and the DMT, for both
compaction and rarefaction. The agreement between
the two methods is excellent, which demonstrates the
quantitative accuracy of the DMT. The small disagree-
ment at higher magnitude deformation from the higher
deformations in Figs 8 and 9 may be partly due to few
high deformations incorrectly determined by the DMT,
and possibly, also by the fact that the DMT used the
full finite strain defined in terms of the displacements,
Equation 3, while the finite element simulation used a
linearized form of Equation 3 [12,13]. The DMT ac-
curately reproduces the double peak shown in the nu-
merical solution. In real random microstructures, the
double peak, here attributable to having two phases, is

usually merged, because of randomness, into a single
broad peak.

6. Effects of scale
The DMT can be applied to different magnification
views of the same area in a microstructure. It has been
shown previously that, if the image is scale invariant, so
that it looks the same at different magnifications, then
the DMT gives the same result for deformations [3] at
each scale. However, the composite microstructures of
cement-based materials are not invariant over the range
of magnification usually used by scanning electron mi-
croscope studies.

In cement paste, one could presumably focus on just
the gel phases, or go to lower magnification and include
unhydrated cement and crystalline phases as well. In
that case, changing the magnification also changes the

5748



Figure 10 Comparison of deformation distributions for finite element
solution (- - -) and DMT (—) computed deformations.

part of the microstructure viewed, and so the DMT will
give, in general, different results at different magnifi-
cations, as it should if the microstructure is not scale
invariant.

Another procedure would be to use lower magnifi-
cation, but then run the DMT on the part of the image
viewed at higher magnification. This would give the
same result except that the DMT requires fine scale
contrast. Good use of DMT requires judgments about
resolution and field of view, as does any microscopic
technique.

7. Summary
A new deformation mapping technique (DMT) has
been described, capable of mapping deformations as-
sociated with each pixel in a microstructure. The tech-
nique is insensitive to the image source or the source
of deformation. It requires two digital images: a ref-
erence image, taken before deformation occurs; and a
deformed image, taken after deformation. Computer al-
gorithms are used to analyze the displacements between
these two images for each pixel in the microstructure.
These displacements are then used to calculate the prin-
cipal (normal) deformations, which are used to com-
pute the average deformation in each pixel. There are a
number of analytical steps that interpolate information
from near neighbor pixels and so facilitate a highly ac-
curate result. The results can be presented as either a
deformation map, a distribution of deformations, or as

a data file. Comparison of the DMT run on a simulated
microstructure with corresponding exact solutions us-
ing finite element analysis shows that the accuracy of
this technique is good. The next paper in this series [18]
utilizes this image intensity matching technique to ana-
lyze the drying shrinkage deformations that develop in
a variety of cement pastes.

Acknowledgements
The authors gratefully acknowledge the financial sup-
port provided by the U.S. Department of Energy (Award
CE-FG02-91ER45460). C. M. N. wishes to thank the
Department of Defense for funding via a National
Defense Science and Engineering Graduate Fellow-
ship.

References
1. Y . X I , T . B. B E R G S T R O MandH. M . J E N N I N G S, Comput.

Mater. Sci.2 (1994) 249.
2. T . B. B E R G S T R O M, PhD Thesis, Northwestern University,

1993.
3. C. M . N E U B A U E R, T. B. B E R G S T R O M, K . S U J A T A, Y .

X I , E. J. G A R B O C Z I andH. M . J E N N I N G S, J. Mat. Sci.32
(1997) 6415.

4. C. M . N E U B A U E R, H. M . J E N N I N G S and E. J.
G A R B O C Z I, Cem. Con. Res.27(10) (1997) 1603.

5. L . D. L A N D A U andE. M . L I F S H I T Z ,“Theory of Elasticity”
(Pergamon Press, Oxford, 1986).

6. D. C. W A L L A C E , Phys. Rev.162(1967) 776.
7. R. N. T H U R S T O N, J. Acoust. Soc. Amer.37 (1965) 348.
8. A . J. D U R E L L I andV . J. P A R K S, “Moire Analysis of Strain”

(Prentice-Hall, Englewood Cliffs, New Jersey, 1970).
9. J. C. D U P R E, M . C O T T R O NandA . L A G A R D E, Exp. Mech.

35 (1995) 153.
10. B. H A N , P. I F J U andD. P O S T, ibid. 33 (1993) 195, 349.
11. R. D. C O O K, D. S. M A L K U S and M . E. P L E S H A,

“Concepts and Applications of Finite Element Analysis”
(John Wiley & Sons, New York, 1989).

12. E. J. G A R B O C Z I andA . R. D A Y , J. Mech. Phys. Solids43
(1995) 1349.

13. E. J. G A R B O C Z I, NIST Internal Report 6394, United States De-
partment of Commerce, National Institute of Standards and Tech-
nology, Gaithersburg, MD, 1998. Also available at http://ciks.cbt.
nist.gov/garboczi/, Chapter 2.

14. K . R. C A S T L E M A N, “Digital Image Processing” (Prentice-Hall,
Englewood Cliffs, N.J., 1979).

15. J. W. E I S C H E N and S. T O R Q U A T O, J. Appl. Phys.74(1)
(1993) 159.

16. R. F. F E L D M A N andP. J. S E R E D A, Mater. Struct.1 (1968)
509.

17. Idem., Eng. J.53 (1970) 53.
18. C. M . N E U B A U E R andH. M . J E N N I N G S, Journal of Mate-

rials Science, submitted.

Received 14 July 1998
and accepted 31 March 2000

5749


